

hybrid-VPP4DSO: 2nd Stakeholder Workshop

Economic appraisal of VPP Use Cases: 1. Market-, 2. Network access-, 3. DSO-driven

Christoph Gutschi (Cybergrid)

Jan W. Bleyl (Energetic Solutions)

Ljubljana, June 9th, 2017

Outline

1. Market-driven VPP (with and without DSO restrictions)

- a. Stakeholders; Information-, Flexibilities- and Cash flows
- b. Input data, Slovenian Tertiary control market
- c. Break-even analyses incl. sensitivity
- d. Dynamic investment calculation for *hybrid*-VPP

2. Client network access-driven VPP: Generators and Consumers

- a. Multi-stakeholder analyses
- b. Economic appraisal for different stakeholders (customer, VPP)

3. DSO-driven use cases: Discussion of use cases and input data

- a. Avoided network construction
- b. Maintenance

Case 1a.: VPP for Flexibility Markets in Austria and Slovenia

© Christoph Gutschi (cyberGRID), Jan W. Bleyl (Energetic Solutions) | Dienstag, 13. Juni 2017 | Folie 3

Overview of Slovenian mFRR market

- mFRR market in Slovenia is small but transparent
- All yearly tender results are published (5 contracts): volume: 10-139 MW, reserve fee 38.900-68.300 EUR/MW/a, energy fee 200-270 EUR/MWh
- There is mainly positive mFRR, neg. mFRR market is neglectable

Comparision of contracts in 2015

Potential revenues of a 10 MW pool in 2015

1a. VPP for Flexibility Markets **Stakeholders: Information, Flexibilities & Cash flows**

1a. CAPEX: a) Fix, b) Variable per MW

Slovenia:

	unit	cost	Explanations and remarks	
a) CAPEX (per VPP system <100 MW):	[EUR]	50.000		
VPP System	[EUR]	50.000	VPP System installation; Pre-qualification APG; TSO connection	
Connection to DSO NOC	[EUR]	0	Network operation center connection (manpower + hardware)	
Trading floor infrastructure	[EUR]	0	not considered	
Trading license	[EUR]	0	Softcost not considered	
Balancing group	[EUR]	0	50.000 EUR Security, refundable	
b) CAPEX (per flexibility of $\sim \pm 1$ MW):	[EUR/MW]	3.000		
Per flexibility connected	[EUR/MW]	2.000	Technician + hardware at client	
Transaction cost VPP client	[EUR/MW]	1.000	Sales, marketing, drawing up of contract	

1a. OPEX: c) Fix per year; d) Variable per MW, year

Slovenia:

	unit	cost	Explanations and remarks
c) OPEX (fix per VPP system per year):	[EUR/a]	65.240	
VPP-IT operating cost	[EUR/a]	30.000	IT-System hosting, maintenance, support
IT-communication TSO	[EUR/a]	200	IT-communication with TSO
IT-communication DSO	[EUR/a]		IT-communication with DSO
Personal operating cost			
VPP operation incl. trading	[EUR/a]	35.040	24/7: 0,1 person equivalents/a (876 h/a @ 65 EUR/h;)
d) OPEX (variable per client per year):	[EUR/a]	3.860	
Software licence VPP (per flexibility of \sim	±1MW)	3.500	
TRL only	[EUR/a]	3.500	including day-ahead, intraday
IT-communication clients (per flexibility)	[EUR/a]	360	Mobile communication, private APN
Average 0,5 + 5 MW	[EUR/a]	360	

1a. Cost structure = f(MW): Fix + variable;1 year operation time

Capacity of controlled customers [MW]

1a, c. Break-even: Revenues (tertiary control) vs. VPP cost; 1 year; Slovenia

1a. Break-even: Revenues vs. cost = f(MW; Rev.-share); 1 years operation time

Case 1b.: VPP for Flexibility Markets with Operating Restrictions from DSO in Slovenia

© Christoph Gutschi (cyberGRID), Jan W. Bleyl (Energetic Solutions) | Dienstag, 13. Juni 2017 | Folie 12

1b. VPP for Flexibility Markets with restrictions from network operation

1b. Revenues CAPEX: a) Fix, b) Variable per MW

Assumption: **Revenues** in EUR/MW/a **reduced per -10%** because of network restrictions (more backup needed)

	unit	cost	Explanations and remarks	
a) CAPEX (per VPP system <100 MW):	[EUR]	70.000		
VPP System	[EUR]	50.000	VPP System installation; Pre-qualification APG; TSO connection	
Connection to DSO NOC	[EUR]	20.000	Network operation center connection (manpower + hardware)	
Trading floor infrastructure	[EUR]		not considered	
Trading license	[EUR]	0	Softcost not considered	
Balancing group	[EUR]	0	50.000 EUR Security, refundable	
b) CAPEX (per flexibility of $\sim \pm 1$ MW):	[EUR/MW]	3.000		
Per flexibility connected	[EUR/MW]	2.000	Technician + hardware at client	
Transaction cost VPP client	[EUR/MW]	1.000	Sales, marketing, drawing up of contract	

1b.

OPEX: c) **Fix per year**; d) **Variable per MW, year**

	unit	cost	Explanations and remarks
c) OPEX (fix per VPP system per year):	[EUR/a]	66.440	
VPP-IT operating cost	[EUR/a]	30.000	IT-System hosting, maintenance, support
IT-communication TSO	[EUR/a]	200	IT-communication with TSO
IT-communication DSO	[EUR(a]	1.200	IT-communication with DSO
Personal operating cost			
VPP operation incl. trading	[EUR/a]	35.040	24/7: 0,1 person equivalents/a (876 h/a @ 65 EUR/h;)
d) OPEX (variable per client per year):	[EUR/a]	3.860	
Software licence VPP (per flexibility of \sim	±1MW)	3.500	
TRL only	[EUR/a]	3.500	including day-ahead, intraday
IT-communication clients (per flexibility)	[EUR/a]	360	Mobile communication, private APN
Average 0,5 + 5 MW	[EUR/a]	360	

1b. Break-even: Revenues vs. cost = f(MW; Rev.-share; availability); 1 year operation time

1b. **Dynamic investment appraisel 10 MW VPP, 5 year operation time**

net cash flows (annual and cumulative) + annual profit € 350 000 key figures: - IRR: P-CF: 321%, E-CF: 321% € 300 000 - NPV: P-CF: 0,22 Mio. EUR, E-CF: 0,22 Mio. EUR - PBT: P-CF: 1,3 years, E-CF: 1,3 years € 250 000 € 200 000 € 150 000 € 100 000 € 50 000 €0 2 3 4 5 -€ 50 000 years -€ 100 000 annual profit (EBT) project cash-flow (P-CF) equity cash-flow (E-CF) debt cash flow

-cumulative project cash-flow

Reduced revenues in the first year, because pool is still being developed. Even in this conservative case (1b) the payback time is only 1,3a and over 5a an IRR of 76%/a is reached.

© Christoph Gutschi (cyberGRID), Jan W. Bleyl (Energetic Solutions) | Dienstag, 13. Juni 2017 | Folie 17

cumulative annual profit

cumulative equity cash-flow

1b. VPP for Flexibility Markets with restrictions from network operation

Advantages	Disadvantages
Flexibilities located in stressed grid sections can be integrated into a pool	Increased costs of VPP per "MW available flexibility"
Even if only temporarily available, such flexibilities can serve as backup to other ressources in the pool	New communication interface between DSO and VPP needed (costs, security issue)
Larger pool size achieveable	Planning of available capacity becomes more complex for the aggregator.
Cooperation between VPP operator and DSO required	Cooperation between VPP operator and DSO required
DSO can get additional information about grid status (from local measurements provided by VPP)	DSO SCADA may need an update to provide the required information to the VPP

Cases 2.: VPP to minimize grid connection cost for new generators and consumers investigated in Austrian case

Network-VPP: New 2 MW Wind/PV, Styria Research question and method

Research question based on use case:

Economic comparison of

- new grid connection or reinforcement of grid connection
- vs. participation in a network-driven VPP?

Methodology:

- **Project cycle cost comparison** (NPV) from customer's perspective
- Break even analysis from VPP perspective

Further assumptions:

VPP only operated for the purpose of customer curtailment for grid operation

Case 2a: New generator applies for grid access in already stressed grid section

DSO can offer two options:

- Standard approach: customer has to pay for the required grid enhancement
- Innovative approach: customer can connect to the existing infrastructure but agrees to be curtailed in critical hours
 - Local P=f(U) feed-in control is the preferred option but may be problematic in some grid topologies
 - Curtailment via VPP (driven by DSO commands) is a versatile solution
- Generators' perspective: compare costs of grid enhancement vs. value of curtailed energy (lost revenue)

Vergleich Erzeugungstypen (Leistung 4 MW)

Use Case: Minimization of grid connection costs: New 2 MW Wind/PV, Styria (2020)

Additional customer (Wind/PV-plant, 2 MW peak) wants to connect at blue feeder, which already has a lot of hydro-units connected:

 "Classic" approach: Customer has to invest into new line to suitable connection point: ca. 15 km for 2.400.000 €

2. Network-VPP approach:

Feed-in is restricted during critical hours (Wind: **50,91** MWh; PV: **40,32** MWh per year)

Calculation for monetary losses due to curtailment is based on feed-in tariffs: Wind: 89,5 €/MWh PV: 82,4 €/MWh

2a - Case study: Optimized capacity of new wind park in "hydro dominated" grid

Source: Spreitzhofer

2a. VPP to minimize grid connection cost for new generators

2a. VPP to minimize grid connection cost **Generator: Cost-Benefit** (qualitative)

	Generator:	Generator:	
	New grid	avoid new grid	
	connection	connection	
	(business as usual)	(hybrid-VPP)	
	Additional	Avoided	
	feed-in	investment	
Revenues,	revenues	cost	
benefits		Avoided	
	-	maintenance	
		cost	
Cost, efforts	Investment cost	Lost feed-in revenues	
	Additional maintenance cost	VPP service fee, Balancing cost	
Economic appraisal	high CAPEX long payback	++ avoided CAPEX	
Other benefits or risks	+ Reinforced network access	- Network connection at limit	

++ very positive
+ slightly positive
0 neutral
- slightly negative
-- very negative

© Christoph Gutschi (cyberGRID), Jan W. Bleyl (Energetic Solutions) | Dienstag, 13. Juni 2017 | Folie 25

2a. VPP to minimize grid connection cost **All stakeholders: Cost-Benefit** (qualitative)

	Generator:	Generator:	
	New grid	avoid new grid	
	connection	connection	
	(business as usual)	(hybrid-VPP)	
	Additional	Avoided	
	feed-in	investment	
Revenues,	revenues	cost	
benefits		Avoided	
	-	maintenance	
		cost	
Cost, efforts	Investment cost	Lost feed-in revenues	
	Additional maintenance cost	VPP service fee, Balancing cost	
Economic appraisal	high CAPEX long payback	++ avoided CAPEX	
Other benefits or risks	+ Reinforced network access	- Network connection at limit	

© Christoph Gutschi (cyberGRID), Jan W. Bleyl (Energetic Solutions) | Dienstag, 13. Juni 2017 | Folie 26

2a. VPP to minimize grid connection cost Cost items: Fix & variable per MW, year

	unit	cost	Explanations and remarks
a) CAPEX (per VPP system <100 MW):	[EUR]	50.000	_
VPP System	[EVR]	30.000	VPP System installation (DSO-internal)
Connection to DSO NOC	[EUR]	20.600	Network operation center connection (manpower + hardware)
b) CAPEX (per flexibility of $\sim \pm 1$ MW): [EUR/MW]	4.000	
Per flexibility connected [EUR/MW]	3.000	Technician + hardware at client site
Transaction cost VPP client [EUR/MW]	1.000	Sales, marketing, drawing up of contract
	unit	cost	Explanations and remarks
c) OPEX (fix per VPP system per year):	[EUR/a]	14.000	
VPP-IT operating cost	[EUR/2]	6.000	17, System hosting, maintenance, support (w/o TSO connection, r
IT-communication TSO	[EUR/a]	0	IT-communication with TSO (not needed)
IT-communication DSO	[EUR/a]	1.200	IT communication with DSO
Personal operating cost			
VPP surveillance of automatic operation	[EUR/a]	6.800	2h/week \cong 102 h/a @ 65 EUR/h (no trading needed)
d) OPEX (variable per client per year)	[EUR/a]	900	
Software licence VPP (per flexibility of \sim	±1MW)		
DSO only	[EUR/2]	300	support for DSO operation, w/o tertiary market
IT-communication clients (per flexibility)	- 1		DSLencrypted
Average 0,5 + 5 MW	[EUR/a]	600	

2a) Economic assessment from customer's perspective (20a life cycle)

2. Break-even analysis from VPP perspective; 10 years operation time

Case 2b: Industrial consumer *applies for grid access in already stressed grid section*

- The DSO can offer same options as for the generator (2a)
 - Payment for grid reinforcement
 - Agreement to curtail consumption (or increase internal generation) during critical hours
- Unlike the generators' case this case is rather driven by overload of equipment and simple local control P=f(U) is no option.
- This case cannot be generalized because not only grid topology but also the internal structure of production industry must be taken into account.
 - Load is not curtailed but shifted (e.g. afternoon → night)
 This may require shift of production cycles and increased labour costs
 - Internal generation of goods storage can eventually provide required flexibility for low costs
 - Opportunity costs mainly depend on type of facility, can be very low in some cases but are likely to be much higher than price of energy (ca. 500 EUR/MWh)

2b: Minimization of grid connection costs: **1,5 MW industrial load, Slovenia**

Additional customer (industrial load, 1,5 MW)

wants to connect at the end of the grid:

1. "Classic" approach:

customer has to invest into grid reinforcement: 1,3 km for 97.000 €

2. Network-VPP approach:

consumption is curtailed during critical hours of the year (max. consumption of 50%)

- 266 h/a
- load shift: 117 MWh/a (1,4% of annual consumption)

2 calculation methods for monetary losses due to curtailment or load shifting:

- NPV at shifting costs of 200 €/MWh
- Marginal shifting costs to reach NPV = 0

2b. VPP to minimize grid connection cost for new generators

2b: Minimization of grid connection costs: **1,5 MW industrial load, Slovenia**

Comparison of discounted cost showed that in the given example grid investment is the better option if costs of load shifting exceed 42 EUR/MWh.

Assumed lifetime: 20a discount rate: 5%

VPP service fee has low impact.

Cases 3a-c.: VPP for DSO in Slovenia and Austria

© Christoph Gutschi (cyberGRID), Jan W. Bleyl (Energetic Solutions) | Dienstag, 13. Juni 2017 | Folie 34

3a. VPP for optimization of grid investments of DSO

За.

All stakeholders: Cost-Benefit (qualitative)

	Generator or consumer	hybrid-VPP	DSO	Supplier, Trader, BRP	Markets	Explanations and remarks
Revenues/ Benefits	Additional income from VPP	Additional income from DSO	Avoided investment (reduced CAPEX)	Balancing energy (from customer)	Balancing energy	
	-	-	-	-	-	
Cost	Balancing cost	Operation cost	VPP service fee (OPEX) (?)	Balancing energy of balance group	-	
		Communication cost	SCADA update, Communication interface	-	-	
Economic appraisal	+ Additional income	+ Minor additional income	To be discussed: efficiency KPIs, ROI	0	0 (low impact)	++ clearly positiv
Other benefits or risks		+ Access to new flexibilities	+ Add. network operation data + Customer relation	- Minor administr. efforts - Forecast more complex		 + slightly positiv 0 mainly neutral - slightly negativ - clearly negativ

© Christoph Gutschi (cyberGRID), Jan W. Bleyl (Energetic Solutions) | Dienstag, 13. Juni 2017 | Folie 36

3a: Avoided grid investment Exemplary case in Slovenia

- Siska region, required grid reinforcement:
 - 2,45 km (180.600 EUR)
- Alternative: hybrid-VPP curtails loads during critical hours
 - Max 1 MW load curtailment
 - 183 MWh/a
 - VPP service fee of 2000 EUR/MW/a
- Assessment over 20a and 5% discount rate: Marginal costs of curtailed energy: 54 EUR/MWh
- Assessment over 50a and 5% discount rate: Marginal costs of curtailed energy: 26 EUR/MWh
- Conclusions:
 - In the given case, the VPP can be used to delay investment or as bridging solution.
 - But it is not economic to replace the investment by a VPP service.

3b. VPP to support grid operation during maintenance and special switching states

3c. VPP to support grid operation with quality regulation regime

hybrid-VPP4DSO: 2nd Stakeholder Workshop

Thank you very much for your kind attention!

Your feedback is appreciated!

Christoph Gutschi (cyberGRID) cg@cyber-grid.com

Jan W. Bleyl (Energetic Solutions) EnergeticSolutions@email.de

Ljubljana, June 9th, 2017